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Patterns in dissipative systems with weakly broken symmetry are studied based upon the simplest canonical
equation �generalized Nikolaevskiy model�. A generic cubic dispersion equation governing stability of steady
spatially periodic patterns is derived and analyzed. A domain of stable states in the space of the problem
parameters �stability balloon� is obtained. It is shown that the domain is characterized by unusual scaling
properties, so that its different parts obey different scalings. The results obtained may be applied to describe
instabilities of advancing fronts and interfaces, pattern formation in reaction-diffusion systems, nonlinear
evolution of seismic waves, and other phenomena.

DOI: 10.1103/PhysRevE.77.035202 PACS number�s�: 89.75.Kd, 05.45.�a, 11.30.Qc

The theory of turbulence is one of the most appealing
topics of the entire area of hydrodynamics and statistical
physics. Owing to the great complexity of the phenomenon a
general theory does not exist and is unlikely ever to be cre-
ated. In this situation any tractable model shedding light on
certain aspects of the problem is of great importance. In the
present paper such a model is proposed and analyzed. The
model describes so-called soft-mode turbulence �SMT� in the
case of weakly broken symmetry.

SMT, also known as the Nikolaevskiy chaos, is an un-
usual type of chaos that arises directly at onset in dissipative
systems with a short-wavelength instability and a continuous
family of unstable spatially uniform states �1–18� . All the
states are physically equivalent and reduced to each other by
transformations of a certain group of symmetry. It should be
emphasized that the only important point is the continuity of
the symmetry group, while the type of the corresponding
symmetry transformations does not play a substantial role.
The latter makes the phenomenon quite general �see below�.

On account of the symmetry the stability spectrum of the
system has a branch of modes whose decay rate vanishes in
the long-wavelength limit �Goldstone branch�. SMT is asso-
ciated with the interplay of long-wavelength modes from this
branch with those related to the short-wavelength instability.
The turbulence arises directly from the spatially uniform
states as a result of a single supercritical bifurcation. On the
one hand, the phenomenon may be regarded as an analog of
the second-order phase transitions �with the critical slowing-
down, divergence of the correlation length at the transition
point, etc.� where average amplitudes of the turbulent modes
play the role of the order parameter. On the other hand it
exhibits the continuous spectrum and the Kolmogorov cas-
cades �both normal and inverse� typical to hydrodynamic
turbulence. For more details see, e.g., Ref. �1�.

These and other peculiarities of SMT motivated its exten-
sive study both experimentally �e.g., Refs. �2–5�� and theo-
retically �1,6,7,9–14�. The latter mostly focused either on
phenomenological amplitude equations introduced to de-

scribe SMT at electroconvection �8,14� or on the Nikolae-
vskiy equation �1,6,7,10–13�.

Initially proposed to describe seismic waves in the Earth’s
crust �15� the Nikolaevskiy equation arises in a variety of
other problems, such as pattern formation in reaction-
diffusion systems �16,17�, certain transversal instabilities of
traveling fronts of chemical reactions and phase transitions
�1,18� including the laser ablation �19�, and even in acoustic
stimulation of oil wells �20�. The equation may be regarded
as the simplest canonical model to study SMT and related
phenomena beyond the framework of amplitude equations. It
should be stressed that owing to the interplay of different
scales typical for SMT �1�, the transition from “microscopic”
to amplitude equations is not a straightforward matter in this
case �1,21�.

Note, however, that in any real situation the symmetry can
never be perfect—it is always broken at least weakly due to
effects of lateral boundary conditions, spatial inhomogene-
ities, external field�s�, etc. The symmetry violation should
result in damping of the Goldstone mode, which in turn may
change the dynamical properties of the system qualitatively.
The issue is of great importance—variations in the range of
the symmetry violation caused by an external field provide
the only opportunity for observing a smooth crossover from
the Turing-type patterns �at strong symmetry breaking� to
SMT �at the unbroken symmetry� exhibited by one and the
same physical system �4,5�. Meanwhile, theoretical analysis
of these effects performed in Refs. �8,14� is based on ampli-
tude equations which do not describe one of the basic at-
tributes of SMT — the interplay of different scales. Then the
question arises: Which of the features discussed in Refs.
�8,14� are generic to SMT and which are specific to the mod-
els analyzed?

The present paper is an attempt to answer this question
based upon a systematic study of a generalized version of the
one-dimensional Nikolaevskiy model. Two-dimensional ver-
sions of the problem are not considered, though it may be
expected that the obtained results are valid for two-
dimensional cases at least qualitatively. The analysis is based
upon a perturbation theory being applicable at small � and �,
where � is the usual control parameter and � stands for the
associated with the broken symmetry damping rate of the*tribelsky@mirea.ru
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Goldstone mode. A single generic dispersion equation deter-
mining the stability conditions for steady spatially periodic
patterns �SSPP� regardless of the scaling properties of the
equation coefficients is derived and inspected. A stability
�Busse� balloon in the form kLeft�� ,���k�kRight�� ,�� is ob-
tained, where k=2� /� and � stands for the period of stable
SSPP. The balloon exists only at ���c��� and vanishes at
�=�c��� while the symmetry still remains broken.

The canonical form of the Nikolaevskiy equation is as
follows �15�:

�v
�t

+
�2

�x2�� − �1 +
�2

�x2�2�v + v
�v
�x

= 0, �1�

with purely real v and �. Usually the Goldstone modes in the
stability spectra of both trivial �v=0� and steady nontrivial
solutions of Eq. �1� are linked to its Galilean invariance �12�.
This is not quite correct. The Galilean transformation
�x→x+v0t; v→v+v0� makes a steady solution time-
dependent and therefore cannot generate a neutrally stable,
time-independent mode. The actual reason for the Goldstone
branches associated with Eq. �1� is equivalence of this equa-
tion to one with the same linear part and nonlinearity vx

2

�6,22�, which is invariant to transformation v→v+const.
The stability analysis of the trivial solution v=0 to per-

turbations �v	exp��t+ ikx� brings about the spectrum

�k = k2�� − �k2 − 1�2� . �2�

Here, and in what follows, the gamma subscript indicates the
corresponding value of the wave number. In agreement with
the problem symmetry, �0=0. Broken symmetry should re-
sult in �0=−�	0. In this case, the dispersion relation reads

�k = − � + k2�� + � − �k2 − 1�2� , �3�

where � in square brackets is added to keep the same mean-
ing for � as that in Eq. �2�. In the case of symmetry violation
by an external field which does not break left-right parity, �
is proportional to the square of the field, see Refs. �4,5,8,14�.
Eq. �3� gives rise to the generalized Nikolaevskiy equation of
the form

�v
�t

+ 
� +
�2

�x2�� + � − �1 +
�2

�x2�2��v + v
�v
�x

= 0. �4�

Let us designate the local maximum of �k achieved at
k=kmax=O�1�, see Eq. �3�, as �max. At any �max
0 Eq. �4�
has a continuous family of spatially periodic solutions �23�

v�x,t� = �
n=−�

�

Vnk�t�exp�inkx�, V
nk
* = V−nk. �5�

Here the wave number k may take any value from the range
�k
0. Inserting Eq. �5� into Eq. �4�, one obtains a chain of
coupled equations

dVnk

dt
= �nkVnk + ik�

m

mVmkV�n−m�k �6�

and a detached equation for V0

dV0

dt
= − �V0. �7�

Thus, for steady solutions of Eqs. �6� and �7�, V0 vanishes.
Regarding other amplitudes, employing the fact that
V�n+1�k=o�Vnk� for small �max and solving the steady version
of Eq. �6� by iterations, it is easy to obtain


Vk
2 = −
�k�2k

k2 �1 + O��max�� ,

V2k = −
ikVk

2

�2k
�1 + O��max��, . . . . �8�

Note that in Eq. �8� �k
0, while �2k	0, so 
Vk
2 is a posi-
tive quantity, as it should be.

The key point of the present study is the stability analysis
of the SSPP. To this end, let us consider small perturbations
to the steady solutions in the form

�v = �
n

Unk+p exp��t + i�nk + p�x� , �9�

where k=2� /� parameterizes the nonlinear solution, whose
stability is analyzed, and small p stands for the perturbation
wave number. For the given perturbations linearization of
Eq. �4� about the steady solution Eq. �8� gives rise to the
following equations:

�� − �nk+p�Unk+p + i�nk + p� �
m=−�

�

Vn−mUmk+p = 0. �10�

The solvability condition, which in this case is reduced to
equalization of the determinant of Eq. �10� to zero, results in
an infinite number of branches �n�k , p� in the stability spec-
trum. However, at small 
, � and p, all of them except three
�at n=0, �1� are stable and have the form �n=�nk+p+o�1�;
n�0, �1. For the remaining three branches, �nk+p is itself a
small quantity. At small �nk+p, the approximation �n��nk+p
does not hold, and these three branches should be inspected
more carefully. Employing the smallness of � for the evalu-
ation of the determinant by a perturbation theory, after cer-
tain algebra the following cubic dispersion equation, describ-
ing the three “dangerous” branches, may be obtained:

�3 + a1�2 + a2� + a3 = 0, �11�

where

a1 = 2�k − �1�p2 − �p, �12�

a2 = − ��2�2 + �1���k + ��k��
2�p2 − �2�k − �1�p2��p + ��1�/2�2p4,

�13�
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a3 = −
2�k�k��2k

k
p2 + 4��2 − �2���k

2p2

+ ��1��k + ��k��
2 − ��1�/2�2p2��pp2 + ��1� −

�1�

3
��2�kp

4.

�14�

Here prime denotes derivative with respect to k.
It should be emphasized that the smallness of � is the only

applicability condition for Eqs. �11�–�14�—the expressions
remain the same at any value of �. For this reason, and since
Eqs. �11�–�14� do not employ an explicit form of dependence
�k, they are generic and robust with respect to possible ways
of generalizing of Eq. �1�. The equations provide the oppor-
tunity to study the stability problem in different scaling
ranges, as well as to describe crossovers between the ranges.

To answer the stability question, one must inspect the
signs of the real parts of the three roots �0,�1 of Eq. �11� as
functions of � ,� ,k, and p. It should be stressed that for cer-
tain values of k, unstable modes are separated from sideband
perturbations �p→0� by a finite gap. This makes the side-
band limit insufficient for the stability analysis, so that the
inspection involving finite p is required. Details of this in-
spection are rather cumbersome and will be discussed else-
where. Here only the final results are presented.

It is shown that for ��1, there are two characteristic
scales of � relative to �, namely, �=O��2� and �=O���. For
�=O��2� the stability condition reads as follows:

1 − 12K2 − 72E2K�1 − 4K2� 
 0. �15�

Here K= �k−kmax� /��max, kmax�1+ �� /4�, E=�max /�2 and
�max��+ ��2 /4�. Note in this case, that a single condition
determines both boundaries of the stability balloon. Violation
of Eq. �15� because of crossing of either the left or right
boundaries of the stability balloon results in monotonic in-
stability �Im��0�.

If 
� 
 ��2 and k→0, the damping of the long-wavelength
modes is large with respect to �max. In this case Eq. �15� is
reduced to the usual Eckhaus condition �24� −1 / 2�3 �K
� 1 / 2�3. An increase in � brings about a shift of the stabil-

ity balloon to the left, but hardly affects its width, see Fig.
1�a�. When �2�
��, the right boundary of the balloon
tends to K=0 �which corresponds to �k=�max�, and the left to
K=−1 /2 �corresponding to the left root of equation �k=0�.
Since destabilization of SSPP occurs owing to coupling of
modes with k close to kmax with those from the vicinities of
k=0 and k=2kmax, the observed asymmetry of the balloon is
obviously related to the difference in dissipation rates for
these two subbands, which becomes pronounced for �2��.

A further increase in � transfers us to the region
�=O���, where �max��. This increase gives rise to splitting
of the balloon into two narrow tongues �each with the char-
acteristic width of O��max�� separated by a gap, see Figs.
1�b� and 1�c�. One tongue is situated in the vicinity of
k=kmax. It ends up with a cusp at �=�c� with
�c�0.1184. . . and �k−kmax� /��−4.299. . . .

The other tongue lies close to the left margin of the neu-
tral stability boundary for the trivial state v=0, i.e., to the left
root kleft of equation �k=0 �25�. The tongue is defined by the
condition

�

72�
�

k − kleft

�
�

�2

144�2 . �16�

It vanishes with a cusp at �=� /2, see Fig. 1�b�. Thus, at
�c����� /2 this tongue represents the only domain of
stable rolls. For �
� /2 the entire set of SSPS is unstable.
Vanishing of the balloon at the finite value of � is connected
with a “resource of instability” of Eq. �1�—none of its steady
spatially periodic solutions are even marginally stable to
long-wavelength modulations �6�. In this case a certain finite
stabilization of the long-wavelength modes is required to
suppress the instability. Note also that in contrast to the case
�=O��2� now the left and right boundaries of each tongue
are defined by two different, absolutely independent condi-
tions. Accordingly, violation of one of the conditions �cross-
ing the left boundary of the left tongue and the right bound-
ary of the central one� triggers a monotonic instability, while
violation of the other �crossing the opposite boundaries� ini-
tiates an oscillatory instability, see Figs. 1�b� and 1�c�.

FIG. 1. �Color online� The base �a� and tips �b, c� of the stability balloon �gray� for steady specially periodic solutions of Eq. �4�. Note
the different scales of axis on panels �a–c�. White and yellow domains correspond to monotonic and oscillatory instabilities, respectively.
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Independence of the two conditions means that for both
the tongues, the cusp tips are just points of intersections of
two smooth curves, while for each of the curves individually
these points are not singled out in any way. Therefore,
completion of the stability balloon with a cusp, should be a
generic feature of the problem, see Refs. �8,14�.

An intermediate scaling range corresponding to the cross-
over from �=O��2� to �=O��� does not admit simple ana-
lytical study. However, it should be stressed that Eqs.
�11�–�14� are valid in this range too and still may be em-
ployed to study �e.g., numerically� the smooth transforma-
tion of the balloon base �Fig. 1�a�� into its tips �Figs. 1�b�
and 1�c��.

In conclusion, it may be said that a generic cubic disper-
sion equation governing stability of SSPS in the generalized
Nikolaevskiy equation has been derived and analyzed. Com-
parison of the results obtained with those discussed in Refs.
�8,14� shows that along with certain similarities �a stability
balloon popping up at a broken symmetry, independent sta-
bility conditions for different boundaries of the balloon, etc.�
there are striking differences generally related to the inter-
play of the various scales exhibited by the Nikolaevskiy
model �different scaling for different parts of the balloon
with the corresponding crossovers between them�, which do
not have the amplitude equations inspected in Ref. �8,14�.

Cox and Matthews have recently published a paper where
another version of the damped Nikolaevskiy equation was
discussed within the formalism of amplitude equations �18�.
In contrast to the generic Eqs. �11�–�14�, the scale mixing did

not allow them to derive a single set of amplitude equations
valid for the entire balloon, so various equations valid for the
specific scales each were introduced. Despite the difference
in the versions of the damped Nikolaevskiy model, the re-
sults obtained in their study are identical to those discussed
above, which proves the aforementioned robustness of Eqs.
�11�–�14�.

The changes of the scaling in different parts of the stabil-
ity balloon and the various types of instabilities arising on
crossing its boundaries provide grounds for a diversity of
dynamical phase transitions which may be observed in this
problem �18�. Systematic study of these transitions, and the
corresponding patterns is a fascinating issue.

Experimental study of SMT for electroconvection in a
homeotropically aligned nematic layer with the symmetry
violated by an external magnetic field applied in the layer
plane detected a stability balloon for SSPP �4,5�. However,
scaling properties of the balloon have not been inspected in
detail. The author believes that the present paper may moti-
vate this study along with further theoretical analysis of
SMT.
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results. The kind hospitality of the entire staff of S. Kai’s
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